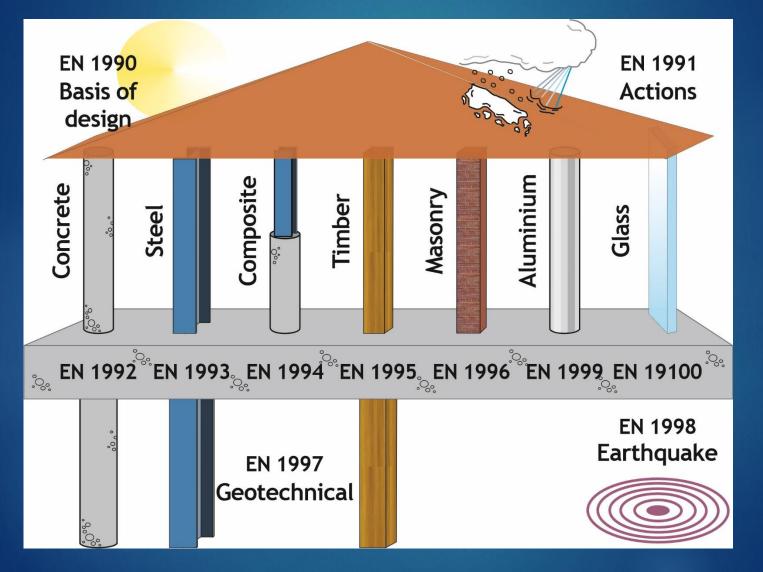
Decoding ^ Eurocode 7 Get ready for the 2nd generation Eurocodes

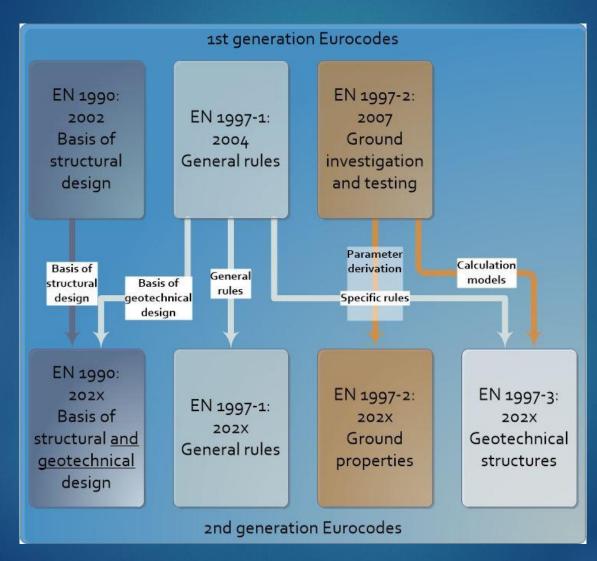
DR ANDREW BOND (GEOCENTRIX) PAST-CHAIR TC250/SC7 GEOTECHNICAL DESIGN CHAIR-ELECT B/526

Decoding ^{2nd generation} Eurocode 7 Get ready for 2nd generation Eurocodes

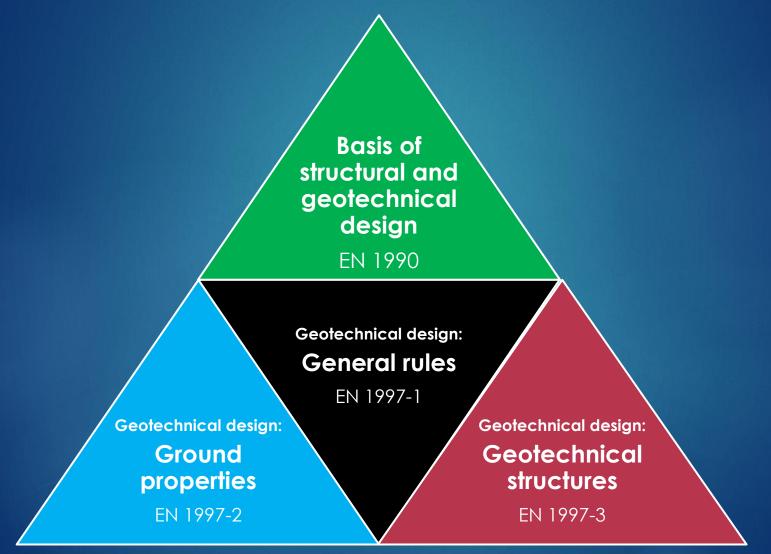
- The 2nd generation Eurocodes
- Technical changes in 2nd generation
- Risk management
- Timetable for adoption
- Summary of key points


The 2nd generation of Eurocodes GET READY FOR THE 2ND GENERATION EUROCODES

A 2nd generation of Eurocodes is coming ...


- In Europe and in many other countries of the world – structural and geotechnical design is governed by the EN Eurocodes
- The 1st generation of EN Eurocodes was published between 2002 and 2007 and are still current
- The 2nd generation Eurocodes will be published in the mid 2020s

The Eurocodes are intended for use by **designers**, **clients**, **manufacturers**, **constructors**, **relevant authorities** (in exercising their duties in accordance with national or international regulations), **educators**, **software developers**, and committees drafting standards for related product, testing and execution standards. Introduction to the Eurocodes (2nd generation)

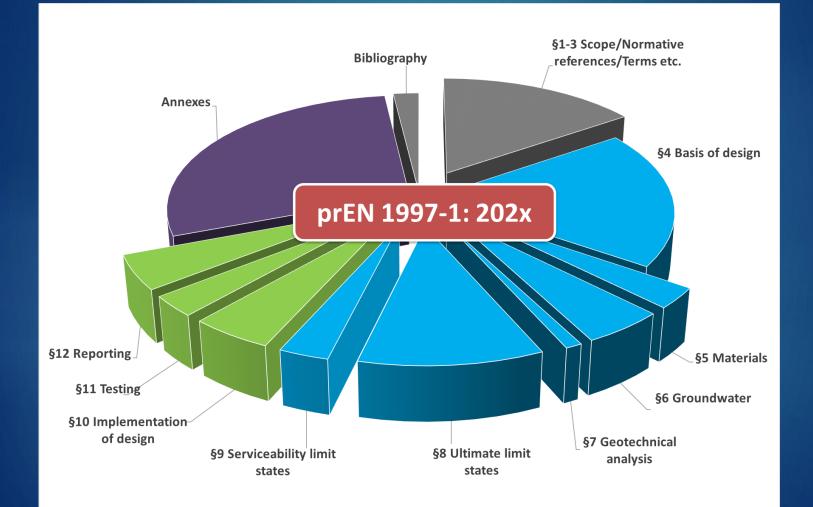

Overview of the 2nd generation Eurocode suite

2nd generation – transformation of Eurocode 7 into 3 Parts

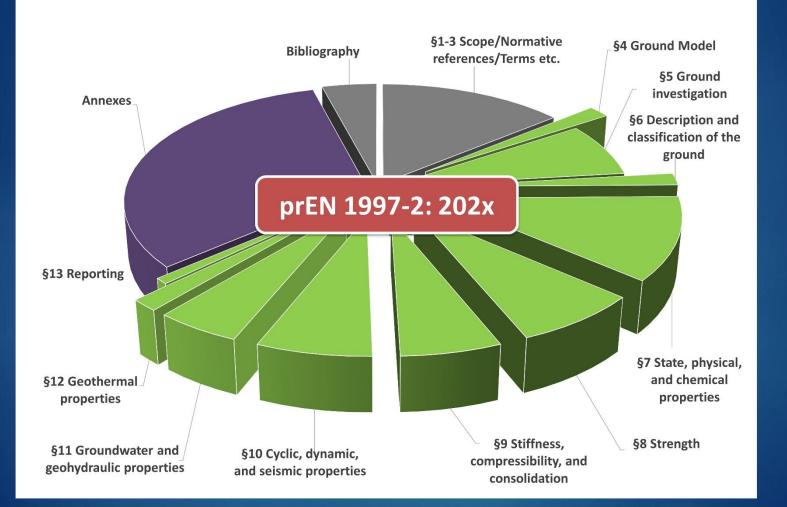
2nd generation Eurocodes Core geotechnical design standards

Scope of the Eurocode

"[The Eurocode] establishes principles and requirements for the safety, serviceability, robustness and durability of structures, including geotechnical structures, **appropriate to the consequences of failure**.

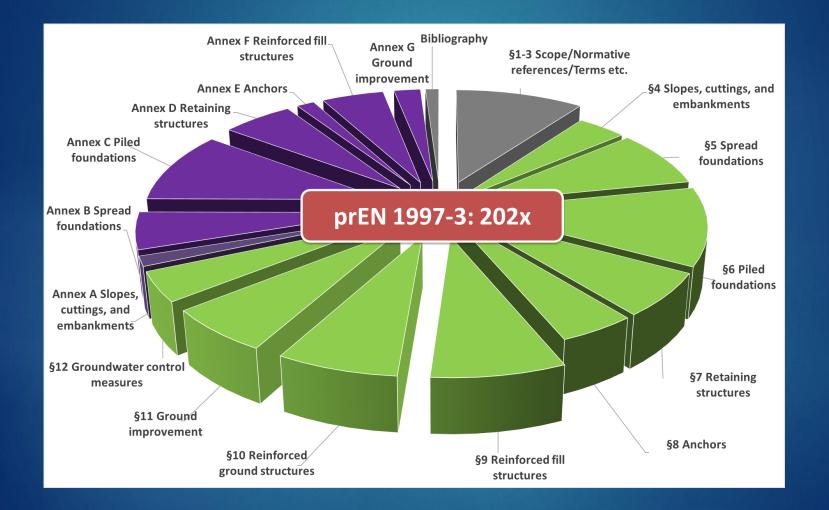

"[It] is intended to be used in conjunction with the other Eurocodes for the design of buildings and civil engineering works, including temporary structures"

FprEN 1990:2022


The Eurocode:

- describes the basis for structural and geotechnical design and verification according to the limit state principle
- gives verification methods based primarily on the partial factor method
- EN 1990 is also applicable for:
 - structural assessment of existing structures
 - developing the design of repairs, improvements and alterations
 - assessing changes of use
 - the design of structures where materials or actions outside the scope of the other Eurocodes are involved

Eurocode 7 – Geotechnical design – Part 1: General rules



Eurocode 7 – Geotechnical design – Part 2: Ground properties

Decoding Eurocode 7 ©2005-2023 Geocentrix Ltd. All rights reservec

Eurocode 7 – Geotechnical design – Part 3: Geotechnical structures

Changes planned following latest public enquiries

EN 1990 Basis of structural and geotechnical design to be sub-divided into:

- Part 1 New structures (EN 1990-1)
- Part 2 Assessment of existing structures (EN 1990-2)

Clause 10 of EN 1997-3 Geotechnical structures "Reinforced ground structures" to be divided into:

- Soil nailed structures (Clause 10)
- Rock bolts and surface support (Clause 11)
- (later clause numbers to be bumped by 1)

Technical changes Get ready for the 2ND GENERATION EUROCODES

Limit states

The following ultimate limit states shall be verified, as relevant:	EN 1990:2002
 failure of the structure or the ground, or any part of them including supports and foundations, by rupture excessive deformation transformation into a mechanism buckling 	STR/GEO Jargon removed
loss of static equilibrium of the structure or any part of it	EQU
failure of the ground by hydraulic heave, internal erosion, or piping caused by excessive hydraulic gradient	HYD
failure caused by fatigue	FAT
failure caused by vibration;	
failure caused by other time-dependent effects	

No single Design Approach – even in a country! (Bond and Harris, 2008)

Decodin

"The manner in which equations [for GEO/STR] are applied shall be determined using one of three Design Approaches "Design Approaches apply ONLY to STR and GEO limit states Each nation can choose which one (or more) to allow" EN 1997-1 §2.4.7.3.4.1(1)P

DA2

DA3 Unconfirmed and DA3

adopted for geotechnic structures DA1

Unconfirmed

DA3

Verification of ultimate limit states 16 Ultimate limit states must be verified using: $E_{\rm d} \leq R_{\rm d}$ For ultimate limit states caused by excessive deformation: $E_{\rm d} \leq C_{\rm d,ULS}$ Factor may be applied to **actions**: Factors may be applied to material properties: Verification Cases 1-3 Material factor approach (MFA) (Factored actions) or to effects of actions: or to resistance: Resistance factor approach Verification Case 4 (Factored effects) (RFA)

Partial factors for fundamental design situations (general application)

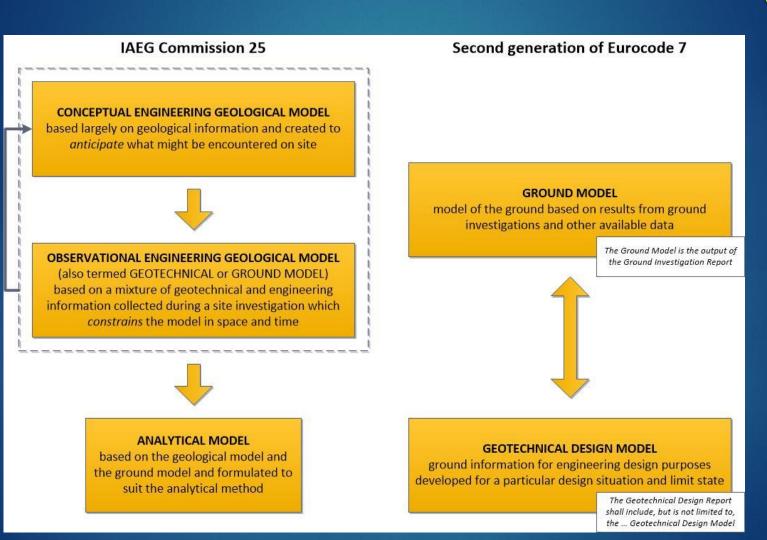
17

	Actio	n or effect		Partial factors $\gamma_{\rm F}$ and $\gamma_{\rm E}$ for Verification Case				ises 1-4	
Туре	Group	Symbol	Resulting effect	Struct- ural*	•			otechnical design	
				VC1	VC2(a)	VC2(b)	VC3	VC4	
Permanent	All	ŶG	unfavourable/						
action (G _k)	Water	$\gamma_{G,w}$	destabilizing						
	All	$\gamma_{\rm G,stb}$	stabilizina				G _k is not factored		
	Water	𝖓Gw,stb	stabilizing						
	(All)	∕G,fav	favourable	On actions					
Prestressing	(P _k)	γ_{P}							
Variable	All	γ _Q	unfavourable						
action (Q _k)	Water	YQW					On		
	(All)	ŶQ,fav	favourable		e				
Effects-of-actions (E)		γ_{E}	unfavourable						
		γ́E,fav	favourable	$\gamma_{\rm E}$ is not applied					
*Also used for geotechnical design; **Less favourable outcome of (a) and (b) applies									

Values taken from prEN 1990:2022, Annex A.1

Partial factors for fundamental design situations (ground properties)

1	8	


Ground property	Symbol	M1	M2			
Soil						
Shear strength in effective stress analysis ($ au_{ m f}$)	$\gamma_{ m au f}$					
Coefficient of peak friction (tan ϕ'_{p})	γ _{tanφ,p}		1.25 k _M			
Peak effective cohesion (c' _p)	γ _{c,p}	1.0				
Coefficient of friction at critical state (tan φ'_{cs})	γ _{tanφ,cs}	1.0	1.1 k _m			
Coefficient of residual friction (tan φ'_r)	$\gamma_{tan\varphi,r}$					
Shear strength in total stress analysis (c_{u})	$\gamma_{\rm CU}$		1.4 k _M			
Rock						
Unconfined compressive strength (q_{u})	$\gamma_{ m qu}$	Same as γ_{cu}				
Shear strength of rock (τ_r)	$\gamma_{ au r}$	1.0	1.25 k _M			
Unconfined compressive strength of rock (q_u)	$\gamma_{ m qu}$	1.0	1.4 k _M			
Discontinuities						
Shear strength of rock discontinuities ($ au_{ m dis}$)	$\gamma_{ au ext{dis}}$	1.0	1.25 k _M			
Coefficient of residual friction (tan $\varphi'_{dis,r}$)	$\gamma_{tan arphi,dis,r}$	1.0	1.1 k _M			

Quences of failure							19
cl	aguence ass/ cription	Loss of human life*	Economic, social or environ- mental*	Examples of buildings where	Factor K _F	Reliab- ility index, β_{50}	Prob- ability of failure, P _{f,50}
CC4	Highest	Extreme	Huge	Additional provisions	can be i	needed	
CC3	Higher	High	Very great	people assemble e.g. grandstands, concert halls	1.1	4.3	~10 ⁻⁵
CC2	Normal	Medium	Consider- able	people normally enter e.g. residential and office buildings	1.0	3.8	~10-4
CC1	Lower	Low	Small	people do not normally enter e.g. agricultural buildings, storage buildings	0.9	3.3	~10 ⁻³
CC0	Lowest	Very low	Insignificant	Alternative provisions	s may be	used	
*CC is chosen based on the more severe of these two columns							

Decoding Eurocode 7 @2005-2023 Geocentrix Ltd. All rights reserved

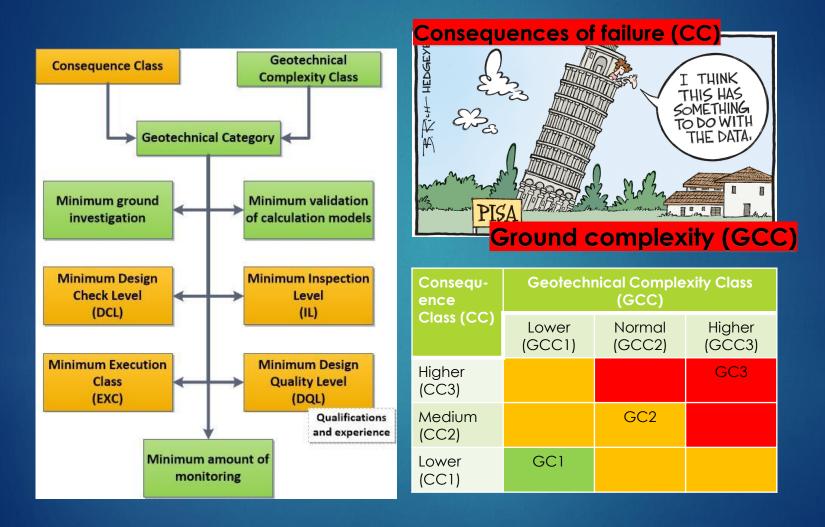
Introducing the Ground Model into Eurocode 7

20

Decoding Eurocode 7 ©2005-2023 Geocentrix Ltd. All rights reservec

Risk management GET READY FOR THE 2ND GENERATION EUROCODES

Technical management measures


Consequence class (CC)	Design qualification & experience level* (DQL)	Design check level* (DCL)	Execution class (EXC)	Inspection level* (IL)
CC3	DQL3	DCL3	See relevant	IL3
Higher	Complex design	Extended independent	execution	Extended independent
CC2	DQL2	DCL2	standards	IL2
Normal	Advanced design	Normal independent		Normal independent
CC1	DQL1	DCL1		IL1
Lower	Simple design	Self-checking		Self-checking

*Defined nationally

Additional project-specific requirements may be as specified by the relevant authority or, where not specified, agreed for a specific project by the relevant parties

Combining consequences with ground complexity

Decoding Eurocode 7 ©2005-2023 Geocentrix Ltd. All rights reserved

Timetable for adoption GET READY FOR THE 2ND GENERATION EUROCODES

Timeline (as of June 2023)

Decoding Eurocode 7 ©2005-2023 Geocentrix Ltd. All rights reserved

Decoding ^{2nd generation} Eurocodes www.geocentrix.co.uk/training

GLORGI D D LSOAVAGL TT R O C 0 0000

Our **2nd generation** courses include ...

- Decoding Eurocode 7
 - Basis of geotechnical design
 - Ground properties and ground investigation
 - Shallow foundations
 - Deep foundations

Decoding Eurocode 3 – Steel foundations

Summary of key points GET READY FOR THE 2ND GENERATION EUROCODES

Improvements in 2nd generation ... EN 1990 Basis of ... design

- Simplification of EQU, STR, and GEO
 - Improves treatment of combined ultimate limit states
- Catering for non-linearity and coupling
 - Incorporates basis of geotechnical design into EN 1990
 - Better treatment of non-linear structural design
- Verification Cases (VCs 1-4)
 - Simple packaging of complicated loading conditions
- Simpler presentation of combinations of actions
 - Greater clarity in the text
- Water actions
 - Clear specification of probabilities of exceedance
- Management measures to achieve the intended structural reliability
 - Flexible system that caters for national preferences

Improvements in 2nd generation ... EN 1997 Geotechnical design

- Organizational changes to Eurocode 7
 - Clearer layout aids ease-of-navigation
 - Greater consistency with EN 1990 aids ease-of-use
- No more Design Approaches!
 - Simpler choice of partial factors
 - Material Factor or Resistance Factor Approach
- Catering for different groundwater conditions
 - Better specification of groundwater pressures
- Separating consequence from hazard
 - Clear distinction between consequence of failure and complexity of the ground
 - Geotechnical Categories now drive meaningful decisions

Decoding [^] Eurocodes Get ready for the 2nd generation Eurocodes

WWW.GEOCENTRIX.CO.UK

WWW.DECODINGEUROCODE7.COM